Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696670

RESUMO

Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Saccharum , Saccharum/genética , Edição de Genes/métodos , Genoma de Planta , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
2.
J Environ Manage ; 351: 119888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176379

RESUMO

Amid rising energy crises and greenhouse gas (GHG) emissions, designing energy efficient, GHG mitigation and profitable conservation farming strategies are pertinent for global food security. Therefore, we tested a hypothesis that no-till with residue retaining could improve energy productivity (EP) and energy use efficiency (EUE) while mitigating the carbon footprint (CF), water footprint (WF) and GHG emissions in rice-wheat double cropping system. We studied two tillage viz., conventional and conservation, with/without residue retaining, resulting as CT0 (puddled-transplanted rice, conventional wheat -residue), CTR (puddled-transplanted rice, conventional wheat + residue), NT0 (direct seeded rice, zero-till wheat -residue), and NTR (direct seeded rice, zero-till wheat + residue). The overall results showed that the NTR/NT0 had 34% less energy consumption and 1.2-time higher EP as compared to CTR/CT0. In addition, NTR increased 19.8% EUE than that of CT0. The grain yield ranged from 8.7 to 9.3 and 7.8-8.5 Mg ha-1 under CT and NT system, respectively. In NTR, CF and WF were 56.6% and 17.9% lower than that of CT0, respectively. The net GHG emissions were the highest (7261.4 kg CO2 ha-1 yr-1) under CT0 and lowest (4580.9 kg CO2 ha-1 yr-1) under NTR. Notably, the carbon sequestration under NTR could mitigate half of the system's CO2-eq emissions. The study results suggest that NTR could be a viable option to offset carbon emissions and water footprint by promoting soil organic carbon sequestration, and enhancing energy productivity and energy use efficiency in the South Asian Indo-Gangetic Plains.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Triticum , Carbono/análise , Dióxido de Carbono , Agricultura/métodos , Água
3.
J Pharm Bioallied Sci ; 14(Suppl 1): S1074-S1078, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36110607

RESUMO

Rehabilitation of various maxillofacial defects is a time-consuming, complex, and overwhelming task requiring a patient-specific design and technique. Human face disfigurement involving loss of an eye enhances physical and emotional challenges. A wide range of various treatment modalities are being practiced over the period of time, with the recent one being use of ocular implants. Undoubtedly, an implant-supported orbital prosthesis has a superior outcome; it may not be as practical option considering the cost and availability, especially in economically constrained patients. The present case report describes a simplified technique for fabrication of an adhesive-retained silicone orbital prosthesis.

4.
J Pharm Bioallied Sci ; 14(Suppl 1): S1033-S1037, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36110754

RESUMO

Traumatic finger digit amputation may affect patient's psychology also along with a serious injury to the affected hand. Recently, advanced micro-surgical re-implantation can help save a damaged human finger that is badly injured and/or amputated. Considering its associated financial burden, a vast majority of such patients cannot afford it. For such patients, a hand/finger prosthesis may act as a blessing, boosting social performance. In the present case report, an innovative type of prosthesis finger replacement method is discussed.

5.
Environ Sci Pollut Res Int ; 29(35): 52534-52543, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35262890

RESUMO

Delay sowing of wheat is a common problem in Punjab that exacerbates serious yield loss. To reduce yield loss and improve yield, different combinations of foliar-applied bioregulator and micronutrients, control (CK), zinc (Zn), boron (B), thiourea (TU), Zn + B (ZnB), Zn + TU (ZnTU), B + TU (BTU), Zn + B + TU (ZnBTU) were applied at booting and grain filling stages in delayed sown wheat in 2017-18 and 2018-19. The results showed that ZnBTU treatment significantly increased leaf area index by 25.06% and 23.21%, spike length by 15.11% and 19.65% in 2017 and 2018, respectively, compared to CK. The ZnBTU treatment also increased 1000-grain weight by 21.96% and 22.01% in 2017 and 2018, respectively, compared to CK. Similarly, higher Zn, B and N contents in straw and grain were recoded for ZnBTU treatment which was statistically similar to ZnB and ZnTU treatments. Overall, ZnBTU treatment also increased the photosynthetic rate, transpiration rate, stomatal conductance by 46.67%, 26.03%, 76.25% and decreased internal CO2 by 28.18%, compared to CK, respectively. Moreover, ZnBTU also recorded the highest grain yield in 2017-18 (25.05%) and 2018-19 (28.49%) than CK. In conclusion, foliar application of ZnBTU at the booting and grain filling stages of delayed sown wheat could be a promising strategy to increase grain yield.


Assuntos
Biofortificação , Triticum , Grão Comestível , Micronutrientes , Triticum/fisiologia , Zinco
6.
PLoS One ; 17(2): e0262812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113909

RESUMO

Intensive agricultural practices lower soil fertility, particularly micronutrients which are rarely applied to soils as chemical fertilizers. Micronutrient deficiency in soils results in inferior product quality and micronutrient malnutrition in humans. Application of compost to soil may improve crop yields and quality by enhancing macro- and micronutrients availability, enhancing soil microbial population, and improving soil physicochemical properties. Poultry mortality compost (PMC) was prepared by decomposing dead poultry birds with poultry litter in an aerated bin through indigenous microbial populations. The prepared PMC was used as an amendment in three field experiments during 2017-18 and 2018-19 to investigate the effect on yield and nutritional quality of potato, carrot, and radish. In these field trials, two compost levels, i.e., 1250 kg ha-1 (PMC1) and 1850 kg ha-1 (PMC2) were compared with the control (no compost application). The results revealed a 10-25% increase in root or tuber yield at PMC2 compared to that in the control. A substantial increase in Zn, Fe, and Mn concentrations in vegetable root/tubers was also observed. Organic matter content and microbial biomass were improved in the soil with PMC application leading to better soil health and better nutrient availability. These studies led us to conclude that the application of PMC not only enhances the vegetable yield but also biofortifies vegetables with micronutrients such as Zn, Fe, and Mn extending agricultural sustainability and eliminating micronutrient malnutrition in humans.


Assuntos
Biofortificação
7.
Appl Soft Comput ; 111: 107642, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34230822

RESUMO

The world is reeling in the midst of the novel coronavirus pandemic with fear of rising toll due to the deadly virus. Decision making during a pandemic outbreak has numerous challenges. Covid19 has become a challenging problem for organizations, countries and the world at large. It is even more complicated when governments and medical care communities are changing their priorities based on the growing challenges and level of effectiveness of measures taken in other countries. In this study, a potential application of a well-known MCDM method called the Group Best-Worst Method is presented to overcome such challenges and draw the strategies to handle COVID19 outbreak. The methodology is applied to rank the 10 identified strategies based on their relative importance provided by multiple groups of stakeholder. These strategies focus on social distancing, medical care, essential commodities, financial support to poor people, public awareness, overall impact of COVID19, digital surveillance of infected or doubtful people, maintaining the economy of the country, and an effect on industries. Furthermore, the local and global weights along with ranking order of strategies are obtained. A sensitivity analysis has also been done to show the change in global weights and ranking order of strategies.

9.
Bull Environ Contam Toxicol ; 106(5): 852-858, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770197

RESUMO

Nutritional status of people can be improved by enhancing zinc (Zn) and iron (Fe) content in cereals used as staple mainly in poor resource countries. Zinc and Fe were applied through soil and foliage in a study to biofortify wheat grains. Foliar application of both micronutrients increased the growth and grain vigor as compared to soil application and control. Also, foliar application significantly enhanced Zn and Fe concentration in grain pre-dominantly localized in aleurone layer. Exogeneous application of Fe and Zn was found beneficial for plant growth and enhanced Fe and Zn concentrations in grain, however aleurone layer and embryonic region of the grain showed higher accumulations than that in endosperm. Therefore, understanding of physiological and molecular pathways for uptake and localization of Fe and Zn in wheat grains need to be critically examined to improve their concentration in grain to achieve the biofortification targets.


Assuntos
Grão Comestível , Triticum , Grão Comestível/química , Humanos , Ferro/análise , Solo , Zinco/análise
10.
J Environ Manage ; 287: 112257, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690013

RESUMO

The economic developments around the globe resulted in the increased demand of energy, which overburdened the supply chain sources of energy. Fossil fuel reserves are exploited to meet the high demand of energy and their combustion is becoming the main source of environmental pollution. So there is dire need to find safe, renewable and sustainable energy resources. Waste to energy (WtE) may be viewed as a possible alternate source of energy, which is economically and environmentally sustainable. Municipal solid waste (MSW) is a major contributor to the development of renewable energy and sustainable environment. At present the scarcity of renewable energy resources and disposal of MSW is a challenging problem for the developing countries, which has generated a wide ranging socioeconomic and environmental problems. This situation stimulates the researchers to develop alternatives for converting WtE under a variety of scenarios. Herein, the present scenario in developing the WtE technologies such as, thermal conversion methods (Incineration, Gasification, Pyrolysis, Torrefaction), Plasma technology, Biochemical methods, Chemical and Mechanical methods, Bio-electrochemical process, Mechanical biological treatment (MBT), Photo-biological processes for efficacious energy recovery and the challenges confronted by developing and developed countries. In this review, a framework for the evaluation of WtE technologies has been presented for the ease of researchers working in the field. Furthermore, this review concluded that WtE is a potential renewable energy source that will partially satisfy the demand for energy and ensure an efficient MSW management to overcome the environmental pollution.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biomassa , Incineração , Resíduos Sólidos , Tecnologia
11.
Plant Physiol Biochem ; 160: 239-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524921

RESUMO

High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.


Assuntos
Plantas/química , Potássio/química , Salinidade , Tolerância ao Sal , Sódio/química , Regulação da Expressão Gênica de Plantas , Íons
12.
Chemosphere ; 274: 129785, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33548642

RESUMO

Pharmaceuticals have been recognized for saving billions of lives, but they also appear as a novel group of environmental pollutants. The presence of pharmaceutically active residues in seawater, surface water, wastewater treatment plants, sludges, and soils has been widely reported. Their persistence in the environment for extended durations exerts various adverse consequences, such as gene toxicity, hormonal interference, antibiotic resistance, sex organs imposition, and many others. Various methodologies have been envisioned for their removal from the aqueous media. Different processes have been restricted due to high cost, inefficient removal, generation of toxic materials, and high capital requirement. The employment of nanostructured materials to mitigate pharmaceutical contaminants has been increasing during the last decades. The adsorptive nanomaterials have a high surface area, low cost, eco-friendliness, and high affinity for inorganic and organic molecules. In this review, we have documented the rising concerns of environmental pharmaceutical contamination and their remediation by applications of nanomaterials. Nanomaterials could be a robust candidate for the removal of an array of environmental contaminants in water.


Assuntos
Poluentes Ambientais , Preparações Farmacêuticas , Materiais Inteligentes , Poluentes Químicos da Água , Purificação da Água , Sinais (Psicologia) , Águas Residuárias , Poluentes Químicos da Água/análise
13.
Pacing Clin Electrophysiol ; 44(3): 423-431, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512027

RESUMO

BACKGROUND: Representation trends of women, older adults, and ethnic/racial minorities in randomized controlled trials (RCTs) of atrial fibrillation (AF) are uncertain. METHODS: We systematically reviewed 134 AF related RCTs (phase II and III) encompassing 149,162 participants using Medline and ClinicalTrials.gov through April 2019 to determine representation trends of women, older patients (≥75 years), and ethnic/racial minorities. Weighted data on the prevalence of AF from epidemiological studies were used to compare the representation of the studied groups of interest in AF RCTs to their expected burden of the disease. RESULTS: Only 18.7% of the RCTs reported proportion of older patients, and 12.7% RCTs reported ethnic/racial minorities. The proportions of women in RCTs versus general population were 35.2% and 35.1%, of Hispanics were 11.9% and 5.2%, of Blacks were 1.2% and 5.7%, of American Indian/Alaskans were 0.2% and 0.2%, of Asians were 14.2% and 2.4%, of native Hawaiian/Pacific Islanders were 0.05% and 0.1% and of non-Whites were 19.5% and 22.5%, respectively. The weighted mean age (SD) across the trials was 65.3 (3.2) years which was less than the corresponding weighted mean age of 71.1 (4.5) years in the comparative epidemiological data. CONCLUSION: The reporting of older patients and ethnic/racial minorities was poor in RCTs of AF. The representation of women and American Indian/Alaskan natives matched their expected population share of disease burden. Hispanics and Asians were over-represented and Blacks, native Hawaiian/Pacific Islanders and non-Whites were under-represented in RCTs of AF.


Assuntos
Fibrilação Atrial/etnologia , Minorias Étnicas e Raciais , Ensaios Clínicos Controlados Aleatórios como Assunto , Mulheres , Fatores Etários , Idoso , Feminino , Humanos , Masculino
14.
Front Plant Sci ; 12: 809322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178057

RESUMO

Cadmium (Cd) contamination of croplands jeopardizes sustainable crop production and human health. However, curtailing Cd transfer and mobility in the rhizosphere-plant system is challenging. Sole application of biochar (BC) and thiourea (TU) has been reported to restrain Cd toxicity and uptake in plants. However, the combined applications of BC and TU in mitigating the harmful effects of Cd on plants have not yet been thoroughly investigated. Therefore, this study attempts to explore the integrated impact of three maize stalk BC application rates [B 0 (0% w/w), B 1 (2.5% w/w), and B 2 (5% w/w)] and three TU foliar application rates [T 0 (0 mg L-1), T 1 (600 mg L-1), and T 2 (1,200 mg L-1)] in remediating the adverse effects of Cd on maize growth, development, and physiology. Results demonstrated that Cd concentration in soil inhibited plant growth by reducing leaf area, photosynthesis activity, and enhanced oxidative stress in maize. Nevertheless, BC and TU application in combination (B 2 T 2) improved the fresh biomass, shoot height, leaf area, and photosynthesis rate of maize plants by 27, 42, 36, and 15%, respectively, compared with control (B 0 T 0). Additionally, the oxidative stress values [malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL)] were minimized by 26, 20, and 21%, respectively, under B 2 T 2 as compared with B 0 T 0. Antioxidant enzyme activities [superoxide dismutase (SOD) and catalase (CAT)] were 81 and 58%, respectively, higher in B 2 T 2 than in B 0 T 0. Besides, the shoot and root Cd concentrations were decreased by 42 and 49%, respectively, under B 2 T 2 compared with B 0 T 0. The recent study showed that the integrated effects of BC and TU have significant potential to improve the growth of maize on Cd-contaminated soil by reducing Cd content in plant organs (shoots and roots).

15.
PLoS One ; 15(12): e0242545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259527

RESUMO

Heavy losses by dark leaf spot disease in oilseed Brassica have incited research towards identifying sources of genetic tolerance against causal pathogen, Alternaria brassicicola. Several morpho-molecular parameters were evaluated to test the performance of field mustard and rapeseed genotypes under artificial inoculation with this pathogen. During Brassica-Alternaria interaction, physio-biochemical defense response was witnessed in tolerant genotypes. Two tolerant genotypes (one for field mustard and one for rapeseed), i.e., EC250407 and EC1494 were identified. However, necrotic lesions were more prominent in susceptible genotypes with minimum chlorophyll (chlorophyll a, chlorophyll b and total chlorophyll) and carotenoids contents. Contrary to photosynthetic pigments, increase in total soluble protein (TSP) contents was observed with disease progression in susceptible genotypes. Tolerant genotypes of field mustard and rapeseed displayed remarkable increase in the activities of redox enzyme in infected leaves with least yield loss (6.47% and 5.74%) and disease severity index (DSI) of 2.9 and 2.1, respectively. However, yield/plant showed close association with other morpho-yield parameters, photosynthetic pigments and redox enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) activities except silique length and TSP. Based on the results of morpho-biochemical analyses, redox enzymes and morphological parameters; their interplay is proposed to determine the tolerance outcome of the Brassica-A. brassicicola interaction.


Assuntos
Alternaria/patogenicidade , Brassica napus/genética , Brassica rapa/genética , Brassicaceae/genética , Antioxidantes/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/parasitologia , Carotenoides , Catalase/genética , Clorofila/genética , Clorofila A/genética , Resistência à Doença/genética , Genótipo , Oxirredução , Fotossíntese , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Superóxido Dismutase/genética
16.
Front Plant Sci ; 11: 547133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193479

RESUMO

Two oilseed rape genotypes (Jiu-Er-13XI and Zheyou-50), differing in seed oil content, were subjected to cadmium (Cd) stress in hydroponic experiment. Genotypic differences were observed in terms of tolerance to Cd exposure. Cd treatment negatively affected both genotypes, but the effects were more devastating in Jiu-Er-13XI (low seed oil content) than in Zheyou-50 (high seed oil content). Jiu-Er-13XI accumulated more reactive oxygen species (ROS), which destroyed chloroplast structure and decreased photosynthetic pigments, than Zheyou-50. Total fatty acids, especially 18:2 and 18:3, severely decreased as suggested by increase in MDA content. Roots and shoots of Jiu-Er-13XI plants accumulated more Cd content, while less amount of tocopherol (Toc) was observed under Cd stress, than Zheyou-50. Conversely, Zheyou-50 was less affected by Cd stress than its counterpart. It accumulated comparatively less amount of Cd in roots and shoots, along with reduced accumulation of malondialdehyde (MDA) and ROS under Cd stress, than Jiu-Er-13XI. Further, the level of Toc, especially α-Tocopherol, was much higher in Zheyou-50 than in Jiu-Er-13XI, which was also supported by high expression of Toc biosynthesis genes in Zheyou-50 during early hours. Toc not only restricted the absorption of Cd by roots and its translocation to shoot but also scavenged the ROS generated during oxidative stresses. The low level of MDA shows that polyunsaturated fatty acids in chloroplast membranes remained intact. In the present study the tolerance of Zheyou-50 to Cd stress, over Jiu-Er-13XI, is attributed to the activities of Toc. This study shows that plants with high seed oil content are tolerant to Cd stress due to high production of Toc.

17.
PLoS One ; 15(7): e0230464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645102

RESUMO

The current study focuses on the usage of bio synthesized zinc oxide nanoparticles to increase the tissue culture efficiency of important forage grass Panicum virgatum. Zinc being a micronutrient enhanced the callogenesis and regeneration efficiency of Panicum virgatum at different concentrations. Here, we synthesized zinc oxide nanoparticles through Cymbopogon citratus leaves extract to evaluate the effect of zinc oxide nanoparticles on plant regeneration ability in switchgrass. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) validate phase purity of green synthesize Zinc oxide nanoparticles whereas, electron microscopy (SEM) has illustrated the average size of particle 50±4 nm with hexagonal rod like shape. Energy dispersive spectroscopy X-ray (EDS) depicted major peaks of Zn (92.68%) while minor peaks refer to Oxygen (7.32%). ZnO-NPs demonstrated the incredibly promising results against callogenesis. Biosynthesized ZnO-NPs at optimum concentration showed very promising effect on plant regeneration ability. Both the explants, seeds and nodes showed dose dependent response and upon high doses exceeding 40 mg/L the results were recorded negative, whereas at 30 mg/L both explants demonstrated 70% and 76% regeneration frequency. The results conclude that ZnO-NPs enhance the plant growth and development and tailored the nutritive properties at nano-scale. Furthermore, eco-friendly approach of ZnO-NPs synthesis is strongly believed to improve in vitro regeneration frequencies in several other monocot plants.


Assuntos
Nanopartículas Metálicas , Panicum/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Óxido de Zinco/farmacologia , Cymbopogon , Nanopartículas Metálicas/ultraestrutura , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/síntese química
18.
PLoS One ; 15(7): e0236454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702710

RESUMO

Flax (Linum usitatissimum) is a member of family linaceae with annual growth habit. It is included among those crops which were domesticated very early and has been used in development related studies as a model plant. In plants, Calmodulin-binding transcription activators (CAMTAs) comprise a unique set of Calmodulin-binding proteins. To elucidate the transport mechanism of secondary metabolites in flax, a genome-based study on these transporters was performed. The current investigation identified nine CAMTAs proteins, classified into three categories during phylogenetic analysis. Each group had significant evolutionary role as illustrated by the conservation of gene structures, protein domains and motif organizations over the distinctive phylogenetic classes. GO annotation suggested a link to sequence-specific DNA and protein binding, response to low temperature and transcription regulation by RNA polymerase II. The existence of different hormonal and stress responsive cis-regulatory elements in promotor region may directly correlate with the variation of their transcripts. MicroRNA target analysis revealed that various groups of miRNA families targeted the LuCAMTAs genes. Identification of CAMTA genes, miRNA studies and phylogenetic analysis may open avenues to uncover the underlying functional mechanism of this important family of genes in flax.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Evolução Molecular , Linho/genética , Família Multigênica/genética , Proteínas de Ligação a Calmodulina/classificação , Genoma de Planta/genética , Filogenia , Ligação Proteica
19.
PLoS One ; 15(7): e0235845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639979

RESUMO

Drought is an important factor which limits growth of sugarcane. To elucidate the physiological and biochemical mechanisms of tolerance, a pot experiment was conducted at Sugarcane Research Institute, Kaiyuan, China. Two genotypes (Yuetang 93-159-sensitive and Yunzhe 05-51-tolerant), were subjected to three treatments; 70±5% (control), 50±5% (moderate drought) and 30±5% (severe drought) of soil field capacity. The results demonstrated that drought induced considerable decline in morpho-physiological, biochemical and anatomical parameters of both genotypes, with more pronounced detrimental effects on Yuetang 93-159 than on Yunzhe 05-51. Yunzhe 05-51 exhibited more tolerance by showing higher dry biomass, photosynthesis and antioxidant enzyme activities. Compared with Yuetang 93-159, Yunzhe 05-51 exhibited higher soluble sugar, soluble protein and proline contents under stress. Yunzhe 05-51 illustrated comparatively well-composed chloroplast structure under drought stress. It is concluded that the tolerance of Yunzhe 05-51 was attributed to improved antioxidant activities, osmolyte accumulation and enhanced photosynthesis. These findings may provide valuable information for future studies on molecular mechanism of tolerance.


Assuntos
Saccharum/genética , Aclimatação , Secas , Fotossíntese , Saccharum/fisiologia , Saccharum/ultraestrutura , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...